
CSCI 520 Assignment 2: Motion Capture Interpolator 

Name: Li-Che Chien (Richard) 

ID: 4504891597 

Email: lichechi@usc.edu 

VS Version: Microsoft Visual Studio 2017 10.0.17763.0 

 

 

Graph 1 

 

Graph 2 



Graph 3 

 

Graph 4 

 

 

graphs 1, 2 lfemur joint, rotation around X axis, frames 600-800, for N=20, for 131_04-dance.amc 

graphs 3, 4 root joint, rotation around Z axis, frames 200-500, for N=20, for 131_04-dance.amc 

 

 

 



Analysis and Observation: 

Firstly, the graph and curves differ. In graph 1, LE is simply a straight line from one key 

point to another, if the input motions are curve, it will lose many details in between. 

The BE seems better, it has some curves between key point, but it may interpolate in 

a wrong way (for example, if k1 and k2 are two key point, f’’(k)*be’’(k) < 0 where k is 

interpolating point between k1 and k2 and f(x) is interpolating curve). Most of the 

time, the BE is better than LE, but sometimes, it comes to the opposite way. 

 

In graph 2, same as graph 1, LQ has a little change along curves, but still looks like a 

straight line. The BQ seems more smooth and curvy, but it may interpolate in a 

wrong way. 

 

In graph 3, we can see that Quaternion deal better than Euler in big changes 

between key points, the curve of LQ stick to the input more likely than the LE. 

 

In graph 4, both Euler and Quaternion are Interpolated with Bezier. The Euler now 

seems to have more artifact. The Euler can’t deal with a big change of key point, 

especially shown as the curve near the end of frames (a peek and a dramatic 

downslope), I will talk about it more in the following words. In this case, BQ performs 

better. 

 

Furthermore, lacking the information of the next key frame also makes the 

movements in linear interpolation methods look like having delays. The movements 

generated by Bezier methods look much smoother and more nature, but if the 

movement in input stops, you will see result movement sways a little bit before 

eventually stops. These can be seen from graph 1 and graph 2. Before the last 50 

frames, the difference between Euler and SLERP is quite small, while you can see 

some tiny delays in graph 4 around frame 300, they are also identical in graph 3. In 

the last 50 frame, there’s a rapid decline in the input, and the results of Euler and 

SLERP are very different. The results of SLERP follow the input curve quite well, 

especially with Bezier, while Euler’s are not. Since the linear SLERP does follow the 

curve, the dramatic drop of Euler’s cannot be caused by low sampling rate. What 

makes it even worse is that in Bezier Euler, not only it drops, but also it comes with a 

weird peak. This makes the result movement of Bezier Euler’s result very unnatural. I 

assume the reason of this is because of the gimbal lock problem of Euler angle 

rotation, which makes the rotation discontinuous. 

 



Extra Credit: 

I plug in the performance counter to interpolate.cpp file, which calculate the 

computation time during Interpolation. For same input file and args, Linear Euler takes 

around 0.8 seconds, while Bezier Euler takes around 5.0 seconds. Linear Quaternion 

takes around 3.2 seconds and Bezier Quaternion takes around 10 seconds. There are 

even more than 10 times complexity of different interpolation techniques. 


